메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임승준 (홍익대학교) 이정호 (건국대학교) 류춘호 (홍익대학교)
저널정보
서비스사이언스학회 서비스 연구 서비스 연구 제14권 제1호
발행연도
2024.3
수록면
27 - 43 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
중고차 시장에서 온라인 플랫폼 서비스의 시장 점유율은 지속적으로 증가하고 있다. 또한 중고차 온라인 플랫폼 서비스는 서비스 이용자에게 차량의 제원, 사고 이력, 점검 내역, 세부 옵션, 그리고 중고차의 가격 등을 공개하고 있다. 2023년 현재 국내 자동차 시장에서 SUV 차종의 신차 점유율은 50% 이상으로 확대되었으며, 하이브리드 차종은 신차 판매량이 지난해에 비해 두 배 이상 증가하였다. 이에 따라 이들 차종은 국내 중고차 시장에서도 인기를 끌고 있다. 기존 연구는 전체 차량 또는 브랜드별 차량을 대상으로 머신러닝 모델을 실행하여 중고차 가격 예측 모델을 제안하였다. 반면 국내 자동차 시장에서 SUV와 하이브리드 차종의 인기는 매년 상승하고 있으나, 이들 차종을 대상으로 중고차 가격 예측 모델을 제안한 연구는 찾기 어려웠다.
본 연구는 국내 시장에서 자국 브랜드가 생산한 세단, SUV, 그리고 하이브리드 차종을 대상으로 차량 제원과 옵션, 총 72개의 특성을 활용하여 이들 차종별 가장 우수한 중고차 가격 예측 모델을 선정하였다. 이를 위해 특성 선택으로 Lasso 회귀 모델을 활용하여 특성을 선별한 후 동일 샘플링으로 앙상블 모델을 실행하였다. 그 결과 모든 차종에서 최우수 모델은 CBR 모델로 선정되었으며, 차종별 최우수 모델을 대상으로 Tree SHAP Value의 시각화를 실행하여 특성의 기여도 및 방향성을 확인하였다. 본 연구의 시사점으로 온라인 플랫폼 서비스를 이용하는 매매관계자에게 차종별 중고차 가격 예측 모델을 제안하고 특성의 기여 수준과 방향성을 확인함으로써 이들 간 정보의 비대칭으로 야기된 문제 해결에 지원이 될 것으로 기대한다.

목차

요약
1. 서론
2. 선행연구
3. 자료 수집 및 특성 설정
4. 머신러닝 모델의 실행 과정
5. 머신러닝 모델의 실행 결과
6. 결론
References
ABSTRACT

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0