메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임승준 (홍익대학교) 이정호 (건국대학교) 류춘호 (홍익대학교)
저널정보
서비스사이언스학회 서비스 연구 서비스 연구 제13권 제3호
발행연도
2023.09
수록면
105 - 126 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
국내 중고차 시장은 지속적으로 성장하고 있으며, 이와 동시에 중고차 온라인 플랫폼 서비스 역시 함께 매년 시장 점유율을 확대하고 있다. 중고차 온라인 플랫폼 서비스는 차량의 제원, 점검 이력, 사고 내역, 그리고 세부 옵션 등을 서비스 이용자에게 제공하고 있다. 대부분의 기존 연구는 차량의 제원과 차량의 일부 옵션을 활용한 중고차 가격의 예측이었으며, 중고차 가격과 일부 제원 변수 간 비선형 관계임을 확인하였다. 이에 따라 연구자들은 이러한 비선형 문제를 해결하기 위해 머신러닝(Machine Learning) 모델의 실행을 제안하였으며, 그 결과 회귀(Regression) 기반 머신러닝 모델은 변수의 실질적인 영향력과 방향성을 알 수 있는 장점이 존재하였으나, 트리(Decision Tree) 기반 머신러닝 모델에 비해 비용함수 수치가 저조한 단점이 존재하였다.
본 연구는 국내 브랜드를 대상으로 차량의 제원과 차량의 옵션, 총 70여 개의 변수를 모두 활용하여 회귀 기반 머신러닝 모델과 트리 기반 머신러닝 모델을 순차적으로 실행하여 두 유형의 머신러닝 모델의 장점을 취합하고자 하였다. 이를 통해 브랜드별 변수의 실질적 영향력과 방향성을 확인한 후 브랜드별 가장 우수한 트리 기반 머신러닝 모델을 선정하였다.
본 연구의 시사점은 다음과 같다. 중고차 온라인 플랫폼 서비스를 이용하는 구매자와 판매자가 전반적인 중고차 가격 예측을 지원할 수 있다. 이에 따라 중고차 온라인 플랫폼 서비스 이용자 간 정보의 비대칭으로 인한 문제 해결 역시 지원이 가능할 것으로 기대한다.

목차

요약
1. 서론
2. 선행연구
3. 자료 수집 및 변수 설정
4. 머신러닝 모델의 실행 과정
5. 머신러닝 모델의 실행 결과
6. 결론
References
ABSTRACT

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0