메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
여민선 (University of Ulsan) 유도혁 (Advanced Institute of Convergence Technology) 박수진 (Advanced Institute of Convergence Technology)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제1호(통권 제238호)
발행연도
2024.1
수록면
31 - 40 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
국내 온라인 패션 플랫폼은 개인사업자가 제품정보를 직접 등록하기 때문에 개인사업자의 불편함을 초래한다. 많은 제품군을 한꺼번에 수동 등록하므로 수기 입력된 제품정보로 인한 신뢰성 문제가 발생한다. 등록된 상품 이미지의 저품질 및 데이터 수의 불균형으로 인한 편향도 심각하게 제기된다. 본 연구는 오버샘플링 기법을 통해 데이터 편향을 최소화하고 13개 패션 카테고리의 다중 분류를 수행하는 ResNet50 모델을 제안한다. 컴퓨팅 자원과 오랜 학습시간을 최소화하기 위해 전이학습을 활용했다. 결과적으로, 데이터 수가 매우 부족했던 클래스의 데이터 증강을 통해 기본 CNN 모델에 비해 최대 33.4%의 향상된 식별력을 보여주었다. 모든 결과의 신뢰성은 정밀도-재현율 곡선으로 보장한다. 본 연구는 국내 온라인 패션 플랫폼 산업의 발전을 한 단계 끌어올릴 수 있을 것으로 기대한다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. Methods
IV. Results
V. Discussion
VI. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0