메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유도혁 (Advanced Institute of Convergence Technology) 박수진 (Advanced Institute of Convergence Technology)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제29권 제5호(통권 제242호)
발행연도
2024.5
수록면
155 - 164 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 ESG 등급이 제공되지 않는 국내 공공기관의 ESG 등급을 추정하는 비지도 학습 기반 군집모형을 제안한다. 이를 위해, 스펙트럼 군집과 k-means 군집에서 최적의 클러스터 수를 비교했고, 그 결과의 신뢰성을 보장하기 위해 성능지표인 Davies-Bouldin Index (DBI)를 계산했다. 결과적으로, 스펙트럼 군집과 k-means 군집에서 각각 0.734 및 1.715의 DBI 값을 산출했는데, 이는 값이 작을수록 우수한 성능을 의미하므로 스펙트럼 군집의 우수성을 확인하였다. 게다가, T-검정 및 ANOVA를 이용하여 ESG 비재무 데이터 간 통계적으로 유의미한 차이를 밝혀내고, 상관계수를 이용하여 ESG 항목 간 상관관계를 확인했다. 본 연구는 이러한 결과를 바탕으로 기존 ESG 등급 없이 공공기관별 ESG 성과 순위를 추정할 가능성을 제시한다. 이는 최적의 클러스터 수를 계산한 다음, 각 클러스터 내 ESG 데이터의 평균 총합을 결정함으로써 달성된다. 따라서, 제안된 모델은 다양한 국내 공공기관의 ESG 등급을 평가하는 근거로 활용될 수 있고, 국내 지속가능경영 실천과 성과관리에 유용할 것으로 기대된다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. Methods
IV. Results
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0