메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최인헌 (고려대학교) 이상원 (고려대학교)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제42권 제6호
발행연도
2023.12
수록면
661 - 673 (13page)
DOI
10.5143/JESK.2023.42.6.661

이용수

DBpia Top 0.5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objective: The objective of the study is to investigate how biases in emotion data affect the inference process of artificial intelligence (AI) models. The first study visually examines the inference process of two distinct models trained on positively biased and negatively biased data, respectively, to observe differences. The second study investigates captions generated by image captioning models trained on four datasets with different ratios of positive and negative biases in emotion.
Background: As AI development accelerates with diverse and large-scale data, concerns about biases raising erroneous learning and reduced prediction accuracy have emerged. Data biases cause unfair outcomes related to race, gender, or ideology.
Method: The first study explores the influence of emotion data bias on a CNN model"s inference process, revealing concentration patterns for positively and negatively biased emotion data using LayerCAM. The second quantitatively analyzes bias influence on outcomes using an image captioning model trained on differently biased datasets. We quantitatively analyze the relationship between the generated captions and the datasets in terms of the Sentiment Intensity Analysis (SIA) values.
Results: Divergent inference processes were observed in the first study, showing that the focused regions of the models were different by different biases in emotion data trained. The second study demonstrated that as the bias ratio shifted, the model-generated captions changed accordingly, with a tendency to produce more positive captions with decreased positive and increased negative biases.
Conclusion: This study underscores the critical impact of emotion data bias on AI model inference and outcomes. Recognizing and mitigating biases in emotion data is imperative for developing fair and effective AI models, particularly in applications involving human-AI interaction. In the context of AI integration in services, addressing emotion data bias is crucial for responsible AI deployment, especially in human-AI interaction.

목차

1. Introduction
2. Related Work
3. Study 1: CNN Models with Emotionally Biased – Binary Classification
4. Study 2: Image Captioning Models with Emotionally Biased – Natural Language Generation
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0