메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
허인석 (금오공과대학교) 김상호 (금오공과대학교)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제42권 제6호
발행연도
2023.12
수록면
571 - 585 (15page)
DOI
10.5143/JESK.2023.42.6.571

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: This study analyzes the angular variation patterns of clustered 3D skeletal data through unsupervised learning to characterize lower extremity joint motion activities and propose a motion segmentation system.
Background: For the commercialization of wearable robots, it is important to recognize and react to the user"s intentions in time so that they can move appropriately according to the operator"s joint movements. To improve human intent prediction performance, computers should apply motion segmentation techniques to efficiently learn human behavior.
Method: Angular data for the back, hip, knee, and ankle joints are extracted from 3D skeletal data using a kinect sensor for 6 major lower extremity working activities of 4 male subjects. It compresses high-dimensional data through a CNN-based autoencoder and analyzes joint movement patterns between clusters by performing KMeans Clustering.
Results: Unsupervised learning on motion patterns showed that there is a clear pattern between clusters for the 6 major working activities. the motion segmentation of the lower extremity joints is classified into clusters with patterns of back (3), hip (4), knee (3), and ankle (3).
Conclusion: The combination of clusters provides a simple representation of the 6 major working activities and can be utilized as an approach to represent more complex activities.
Application: Beyond simply classifying motion patterns, it is expected to be used in the development process of algorithms for motion prediction.

목차

1. Introduction
2. Method
3. Motion Patterns Clustering
4. Motion Segmentation
5. Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0