메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
채수민 (연세대학교) 이진국 (연세대학교) 이연숙 (연세대학교)
저널정보
한국실내디자인학회 한국실내디자인학회 논문집 한국실내디자인학회 논문집 제32권 제6호(통권 제161호)
발행연도
2023.12
수록면
62 - 69 (8page)
DOI
10.14774/JKIID.2023.32.6.062

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper aims to generate and construct visual information in the field of interior design through the utilization of intelligent technologies. Specifically, it focuses on providing visual information images of bathroom spaces tailored to the user"s physical characteristics, considering that safety incidents frequently occur in residential bathrooms. Generative models within the continuously advancing field of artificial intelligence have increasingly found applications in the realm of design. When conducting tests for generating bathroom images using generative artificial intelligence capable of rapidly providing diverse alternatives for interior space images, it was observed that the specific physical characteristics of the user, as input, were not adequately reflected in the generated images. Additionally, errors were identified in the forms of safety equipment within the generated bathroom images. Therefore, in this paper, we constructed a dataset that included self-generated bathroom space images reflecting physical characteristics, along with accompanying text files that described each image. Subsequently, we conducted additional training using this dataset. The additional training was performed using the LoRA(Low-Rank Adaptation) method and took approximately 20 minutes. As a result of this training, a model file of 144MB was generated. Images generated using this model demonstrated a notable contrast to the limitations of the original model. They featured correctly positioned safety equipment, and a significant reduction in errors was observed in the generated images. Through this content, it is anticipated that future developments in the comprehensiveness of incorporating physical characteristics and the construction of relevant information and training data will enhance the scalability and utility of image generation AI in the field of interior space design.

목차

Abstract
1. 서론
2. 이론적 배경
3. 생성형 인공지능 기반 공간설계
4. 추가학습모델 구축
5. 추가학습모델 생성 테스트
6. 결론
참고문헌

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089263789