메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Chuyen Pham (University of Science and Technology) Hyu-Soung Shin (Korea Institute of Civil Engineering and Building Technology)
저널정보
한국암반공학회 터널과 지하공간 터널과 지하공간 제33권 제6호(통권 제167호)
발행연도
2023.12
수록면
508 - 518 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이 논문은 LiDAR 스캔 또는 사진측량 기술에 의해 재구성된 3D 디지털 모델을 기반으로 터널 벽면의 불연속면을 자동으로 매핑하는 새로운 접근 방식을 제안한다. 본 제안에서는 U-Net이라 불리는 딥러닝 시맨틱 영역분할 모델을 사용하며, 터널 막장면의 3D 지형 모델에서 불연속면 영역을 식별해 낸다. 제안된 딥러닝 모델은 투영된 RGB 이미지, 면의 깊이 이미지 및 국부적인 면의 표면 속성 이미지(즉, 법선 벡터 및 곡률 이미지)를 포함한 다양한 정보를 종합 학습하여 기본 3차원 이미지에서 불연속면 영역을 효과적으로 분할한다. 이후 영역분할 결과는 면의 깊이 맵과 투영 행렬을 사용하여 3D 모델로 다시 투영시키고, 3D 공간 내에서 불연속면의 위치 및 범위를 정확하게 표현한다. 영역분할 모델의 성능은 영역 분할된 결과를 해당 지면 실측 값과 비교함으로써 평가하였으며, IoU(intersection-over-union) 값이 약 0.8 정도로 나타나 영역분할 결과의 높은 정확성을 확인하였다. 여전히 학습데이터가 제한적 이었음에도 불구하고, 제안 기법은 3D 모델의 점군 데이터를 불연속면의 유사군으로 그룹화하기 위해 전 막장면의 법선 벡터와 클러스터링과 같은 비지도 학습기반 알고리즘에만 의존하던 기존 접근 방식의 한계의 극복 가능성을 보여주었다.

목차

ABSTRACT
초록
1. INTRODUCTION
2. METHODOLOGY
3. RESULT AND DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0