메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
HoSeong Jung (Agency for Defense Development) Yong-Duk Kim (Agency for Defense Development)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,962 - 1,968 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The within-visual-range (WVR) air-to-air combat problem, also known as dogfight, has been of great interest to researchers and is known to be challenging to address with reinforcement learning due to its extremely nonlinear dynamics. The previous work on dogfight has required the design of complicated reward functions to control high-dimensional state and action spaces and the design of suitable adversaries to effectively engage any opponent. In this paper, we present a self-play soft actor-critic (SPSAC) framework that is specialized for training one-on-one dogfight. It combines self-play (SP) using the proposed league configuration and dense-to-sparse (D2S) reward based on the recurrent soft actor-critic (RSAC) algorithm. We built a simulated air combat environment to evaluate our method, focusing on whether the trained models are robust against various opponents. SPSAC responds to all opponents more robustly than models trained by a straightforward self-play algorithm and greatly surpasses models trained using conventional reinforcement learning in terms of training performance. Moreover, the inherent nature of SPSAC eliminates the risk of converging to a suboptimal policy after the complex reward function is designed or the risk of overfitting by encountering fewer opponents.

목차

Abstract
1. INTRODUCTION
2. AIR COMBAT ENVIRONMENT
3. METHOD
4. EXPERIMENT
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088266768