메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Carlos Vasquez-Jalpa (Instituto Politecnico Nacional) Mariko Nakano-Miyatake (Instituto Politecnico Nacional) Enrique Escamilla-Hernandez (Instituto Politecnico Nacional)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
743 - 748 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a deep reinforcement learning algorithm for autonomous robotics, in which we modify twin delay deep deterministic policy gradient (TD3) to adapt for autonomous robots with higher degree freedom in movement. To provide a robot with free movement in the 2D space without collisions against some obstacles, such as wall, a robot is equipped with three cameras. The images captured by camera are used to train Convolutional Neural Networks (CNN) to understand environment with collisions or not-collisions. We added two additional parameters, observation ‘O’, which are images obtained from cameras, and degrees of turns ‘deg’ into the original TD3’s parameters composed of four values: [state ‘s’, reward ‘r’, action ‘a’ and nextstate ‘s’’]. To determine a next action with higher reward from the observation, two additional Neural Networks are constructed, being the first one determines an action from observation and the second one determines degree of turn from the observation and the action. The simulation results under three environments constructed by CoppeliaSim show a good performance of the proposed algorithm, reaching the target with higher rewards, even though the environments are unknown by robots.

목차

Abstract
1. INTRODUCTION
2. PRELIMINARIES
3. ALGORITHM DESCIPTION
4. EVALUATION OF PROPOSED ALGORITHM
5. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0