메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sebastián Espinel-Ríos (Max Planck Institute for Dynamics of Complex Technical Systems) Rudolph Kok (Otto von Guericke University Magdeburg) Steffen Klamt (Max Planck Institute for Dynamics of Complex Technical Systems) José L. Avalos (Princeton University) Rolf Findeisen (Control and Cyber-Physical Systems Laboratory)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
1,292 - 1,297 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Microbial consortia are promising biotechnological production systems with the potential to divide complex metabolic pathways into smaller submodules, as well as make products and consume substrates that monocultures cannot. Maintaining optimal cell population levels and preventing monoculture formation challenge bioproduction by microbial consortia. Optogenetics allows for regulating the expression of key growth-regulatory genes through light to modulate cell population levels. Model-based dynamic optimization can determine optimal light trajectories and inoculum sizes that maximize product synthesis while satisfying system constraints, e.g., safety, economic, or technical aspects. Furthermore, closed-loop dynamic optimization can address system uncertainty to a certain extent; however, its implementation is challenging due to limited online sensors. Alternatively, here we propose to perform open-loop optimization with batch-to-batch model adaptation based on Gaussian processes for maximizing bioproduction by optogenetically assisted consortia. The proposed approach enables knowledge transfer from existing to new models, improving predictability and optimization performance in each batch while avoiding costly and time-consuming modeling experiments. Compared to closed-loop optimization, this strategy is easier to implement as it does not rely on online monitoring, contributing to the state of the art in optimizing bioproduction by microbial consortia. We outline the applicability of the approach using simulation experiments of an optogenetically assisted consortium for the biosynthesis of the flavonoid naringenin, considering both parameter and model structure uncertainty.

목차

Abstract
1. INTRODUCTION
2. BATCH-TO-BATCH OPTIMIZATION WITH MODEL ADAPTION
3. SIMULATION EXAMPLE: NARINGENIN BIOSYNTHESIS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265707