메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kiavash Fathi (Zurich University of Applied Sciences) Marcin Sadurski (Zurich University of Applied Sciences) Tobias Kleinert (RWTH Aachen University) Hans Wernher van de Venn (Zurich University of Applied Sciences)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
975 - 980 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Predicting the remaining useful life (RUL) plays a significant role in reducing the downtime of operational assets and maintenance costs. While various predictive maintenance (PdM) studies have utilized sensor data to calculate RUL, valuable information from system alarms has often been overlooked or marginally used. This paper introduces the first-ever solely alarm-based PdM model for RUL estimation. To demonstrate the effectiveness of the proposed method in real-world production lines, the alarm data from two instances of milling machines, used for producing artificial bone joints, are utilized for PdM model development and testing. Additionally, given the varying operation hours of the machines and also the changes in the size of the produced bone joints, this study demonstrates the importance of pinpointing different subpopulations of the alarm data, called data modality (DM), for improved RUL estimation. As flexible and adaptable manufacturing required in Industry 4.0 results in constant changes in the distribution of the gathered data, this paper presents a systematic and generic approach for identifying different DMs, which results in a significant decrease of up to 25.20% in the mean absolute error (MAE) for RUL predictions on the whole test dataset, and up to 60.50% in the MAE of the RUL predictions for the minority DM in the test dataset.

목차

Abstract
1. INTRODUCTION
2. ALARM LOG GENERATION FROM RAW ALARM DATA
3. PRELIMINARIES
4. DM CLASSIFICATION
5. MODEL TRAINING FOR ENHANCED RUL ESTIMATION
6. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088265225