메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Minseok Jang (Konkuk University) Jeongseok Hyun (Konkuk University) Tuan Anh Nguyen (Konkuk University) Jae-Woo Lee (Konkuk University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
590 - 595 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study investigates the fusion of physics-informed machine learning (PIML) and generative adversarial networks (GAN), targeting specifically the flight dynamics modeling of Electric Vertical Takeoff and Landing (eVTOL) aircraft. Emphasis is placed on the beneficial role of transfer learning, which utilizes pre-existing models for cognate tasks, leading to heightened model efficiency and decreased computational expenses. This approach is particularly advantageous in the realm of PIML, facilitating model applicability across similar systems or scenarios. The research notably introduces a novel set of models capable of generating physically viable scenarios, thereby increasing the authenticity and effectiveness of digital twins for system dynamics prediction. Validation of this methodology through a series of flight simulations and tests reveals a significant decrease in prediction error post-transfer learning implementation. The PIGD model, for instance, shows an average error reduction of 11.30% relative to the model trained using flight test data, thus enabling more accurate predictions with scarce flight data and mitigating issues related to extensive flight tests such as safety, time, and cost. This study considerably aids in the advancement of urban air mobility, especially concerning eVTOL aircraft, and sets the stage for future explorations and applications of PIML in intricate domains.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EXPERIMENTAL RESULTS
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264648