메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Youjin Kim (ChungAng University) DaGyeong Na (ChungAng University) Hongchan Yoon (ChungAng University) JunSeok Kwon (ChungAng University)
저널정보
대한전자공학회 대한전자공학회 학술대회 2024년도 대한전자공학회 하계학술대회 논문집
발행연도
2024.6
수록면
2,699 - 2,703 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The field of computer vision has seen remarkable advancements in the domain of generative tasks. These advancements have facilitated the creation of diverse images from complex input data. However, traditional data-driven generative models often fall short in terms of robustness and interpretability, particularly when faced with the challenges of high-dimensional image data and noisy or insufficient training datasets. These limitations are especially problematic in tasks requiring the simulation of physical phenomena, as these models typically generate outputs that may not be physically plausible.
Physics-Informed Neural Networks (PINNs) have emerged as a potent solution to these deficiencies, integrating physical laws directly into the learning process to enhance both the accuracy and generalizability of model predictions. This paper explores the application of PINNs in various computer vision generation tasks, highlighting their utility in generating visually plausible content that adheres to realistic physical constraints. This review explores how incorporating physical laws into GANs and DDPMs, as illustrated in various research studies, addresses the shortcomings of traditional generative models, facilitating more dependable and physically accurate visual simulations across a range of applications. The merging of physics and machine learning in these instances not only stabilizes the training processes but also enhances the fidelity and robustness of generated images. Such insights underscore the broad potential of physics-informed methodologies in advancing computational vision systems, showing that these approaches are instrumental in refining the capabilities of generative models.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Generative Models in Vision
Ⅲ. Physics-Informed Neural Networks in Vision Generation Tasks
Ⅳ. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0