메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Cristian MP Napitupulu (Institut Teknologi Bandung) Steven Bandong (Institut Teknologi Bandung) Yul Yunazwin Nazaruddin (Institut Teknologi Bandung) Parsaulian I. Siregar (Institut Teknologi Bandung)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
420 - 425 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The increasing exchange of goods between countries and continents necessitates efficient transportation facilities, with cargo seaports playing a vital role. Within each cargo seaport, the Rubber Tyred Gantry Crane (RTGC) stands out as crucial heavy equipment that requires automation to manage heavy cargo traffic and eliminate bottlenecks. While linear control methods are commonly employed to address this challenge, the inherent nonlinear behavior of the system must be considered. This paper focuses on designing a nonlinear control method, specifically the Sliding Mode Controller (SMC), to create an effective MIMO controller for managing the position, cable length, and sway of the gantry crane system. Two DC motors serve as actuators for controlling the trolley position and cable length, which hoists the container. The nonlinear gantry crane model, integrated with the nonlinear DC motor model, is elaborately derived. Subsequently, the designed non-linear SMC control law and sliding surface are simulated to assess control performance. Acknowledging the limitation of the power source and DC motor specifications, the paper also explores control performance when the voltage to control RTGC is constrained within a specified range. The results demonstrate that the proposed method yields excellent control performance for both constrained and unconstrained control outputs.

목차

Abstract
1. INTRODUCTION
2. SYSTEM ANALYSIS
3. SYSTEM DYNAMICS
4. SLIDING MODE CONTROLLER
5. RESULTS AND DISCUSSION
6. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264415