메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조재한 (대구대학교) 박재민 (대구대학교) 김태협 (대구대) 이승욱 (대구대학교) 김지연 (대구대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제12권 제2호
발행연도
2023.3
수록면
66 - 75 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 기업 및 공공기관 정보시스템의 클라우드 전환이 가속화되면서 클라우드 환경에서 운영되는 웹 애플리케이션이 증가하고 있다. 클라우드 웹 애플리케이션에 대한 전통적인 네트워크 공격은 대량의 패킷으로 네트워크 자원을 고갈시키는 DoS(Denial of Service) 공격이 대표적이지만, 최근에는 애플리케이션 자원을 고갈시키는 HTTP DoS 공격도 증가하고 있어 이에 대응하기 위한 보안기술 마련이 필요하다. 특히, HTTP DoS 공격 중, 저대역폭으로 수행되는 공격은 네트워크 자원을 고갈시키지 않기 때문에 네트워크 메트릭을 모니터링 하는 전통적인 보안 솔루션으로 탐지하는 것이 어렵다. 본 논문에서는 클라우드 웹 애플리케이션에 HTTP DoS 공격을 주입하면서 웹 서버의 애플리케이션 메트릭을 수집하고, 이를 머신러닝 기반으로 학습하여 공격을 탐지하는 새로운 탐지 모델을 제안한다. 애플리케이션 메트릭으로는 아파치 웹 서버의 18종을 수집하였고, 5종의 머신러닝 모델과 2종의 딥러닝 모델을 사용하여 수집한 데이터를 학습하였다. 또한, 6종의 네트워크 메트릭을 추가로 수집 및 학습하고, 제안된 애플리케이션 메트릭 기반 모델과 성능을 비교함으로써 애플리케이션 메트릭 기반 머신러닝 모델의 우수성을 검증한다. HTTP DoS 공격 중, 저대역폭으로 수행되는 RUDY 공격과 고대역폭으로 수행되는 HULK 공격을 제안된 모델로 탐지한 결과, 두 공격 탐지에 있어서 애플리케이션 메트릭 기반 머신러닝 모델의 F1-Score가 네트워크 메트릭 기반의 모델보다 각각 약 0.3, 0.1 높은 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0