메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이화성 (Agency of Defense and Development) 김기수 (Agency of Defense and Development)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제23권 제10호
발행연도
2019.10
수록면
1,311 - 1,319 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 웹 환경은 정보 공유와 비즈니스 수행을 위해 보편적으로 사용되고 있는 영역으로 개인 정보 유출이나 시스템 장애 등을 목표로 하는 외부 해킹의 공격 타켓이 되고 있다. 기존의 사이버 공격 탐지 기술은 일반적으로 시그니처 기반 분석으로 공격 패턴의 변경이 발생할 경우 탐지가 어렵다는 한계가 있다. 특히 웹 취약점 기반 공격 중 삽입 공격은 가장 빈번히 발생하는 공격이고 다양한 변형 공격이 언제든 가능하다. 본 논문에서는 웹서버 로그에서 정상상태를 벗어나는 비정상 상태를 탐지하는 이상상태 탐지 기법을 제안한다. 제안된 방법은 웹서버 로그 내 문자열 항목을 머신러닝 기반 임베딩 기법으로 벡터로 치환한 후 다수의 정상 데이터와 상이한 경향성을 보이는 비정상 데이터를 탐지하는 머신러닝 기반 이상상태 탐지 기법이다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 웹서버 로그 데이터셋(WSLD) 생성
Ⅳ. 웹서버 로그 기반 이상상태 탐지 기법
Ⅴ. 실험 및 평가
Ⅵ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-001288829