메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ankit Vijayvargiya (Malaviya National Institute of Technology) Bharat Singh
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.12 No.4
발행연도
2022.11
수록면
343 - 358 (16page)
DOI
https://doi.org/10.1007/s13534-022-00236-w

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Human lower limb activity recognition (HLLAR) has grown in popularity over the last decade mainly because to its applicationsin the identification and control of neuromuscular disorders, security, robotics, and prosthetics. Surface electromyography(sEMG) sensors provide various advantages over other wearable or visual sensors for HLLAR applications, includingquick response, pervasiveness, no medical monitoring, and negligible infection. Recognizing lower limb activity from sEMGsignals is also challenging owing to the noise in the sEMG signal. Pre- processing of sEMG signals is extremely desirablebefore the classification because they allow a more consistent and precise evaluation in the above applications. This articleprovides a segment-by-segment overview of: (1) Techniques for eliminating artifacts from sEMG signals from the lower limb. (2) A survey of existing datasets of lower limb sEMG. (3) A concise description of the various techniques for processingand classifying sEMG data for various applications involving lower limb activity. Finally, an open discussion is presented,which may result in the identification of a variety of future research possibilities for human lower limb activity recognition. Therefore, it is possible to anticipate that the framework presented in this study can aid in the advancement of sEMG-basedrecognition of human lower limb activity.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0