메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
D. Sivabalaselvamani (Kongu Engineering College) K. Nanthini (Kongu Engineering College) S. Vanithamani (M.Kumarasamy College of Engineering) L. Nivetha (Kongunadu College of Engineering and Technolog)
저널정보
한양대학교 세라믹공정연구센터 Journal of Ceramic Processing Research Journal of Ceramic Processing Research 제24권 제1호
발행연도
2023.2
수록면
78 - 88 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Ceramic tiles are in high demand in the infrastructure and building development industries due to their low cost, ease ofinstallation, maintenance, moisture resistance, and availability in a broad range of colors, textures, and sizes. Automatedfacilities, which produce hundreds of tiles in every segment, require a tremendous volume of output. Because of the largenumber of tiles produced and the frequency with which they are produced, it is impossible to manually examine them forfaults, necessitating the use of a rapid, efficient, and reliable automated process. However, while the process of detecting flawsand categorizing them (or classification) is not as efficient as it might be, recent advances in computing technology,mathematical modeling, and high-resolution picture capture equipment have given rise to new prospects in the subject. Manykinds of literature on using these systems for the same goal are currently accessible. Deep learning is a type of artificialintelligence that helps people makes decisions. In production applications, image detection of faulty Ceramic Tile Surfaces isa critical skill. Deep learning is now being studied for its potential application in automated defect identification. As a result,we propose Deep Learning approaches that take advantage of the transform domain properties of the tiles image. The model'scapacity to learn via the system makes it versatile and dynamically customizable. Different deep learning-based fault detectionand classification transfer learning approaches are examined in this study.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0