메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chi Zhang (Liaocheng Vocational and Technical College)
저널정보
한양대학교 세라믹공정연구센터 Journal of Ceramic Processing Research Journal of Ceramic Processing Research Vol.25 No.4
발행연도
2024.8
수록면
572 - 588 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Introduction: Ceramic tile surface defect detection is crucial for ensuring product quality. This study proposes an integratedapproach combining feature engineering and a Defect Fuse Classifier for accurate defect detection. Methods: The proposedmodel utilizes Python and splits the collected data into 70% for training and 30% for testing. Purpose: The purposesection explicitly states the objectives of the study. It highlights the research goals, such as evaluating the effectiveness ofthe proposed methodology in detecting ceramic tile surface defects and exploring the impact of parameter variations ondetection performance. Results: Comparative analysis with state-of-the-art methods is conducted using various metrics suchas sensitivity, specificity, accuracy, precision, FPR, FNR, NPV, F-Measure, and MCC. (a) For a Training Rate of 70%: Theproposed Defect Fuse Classifier outperforms existing models with an accuracy of 97.4%, precision of 88.5%, sensitivity of88.5%, specificity of 98.5%, F-Measure of 88.5%, MCC of 87%, NPV of 98.5%, FPR of 1.4%, and FNR of 11.4%. Conclusion:This study introduces a novel deep learning approach for ceramic tile surface defect detection, encompassing data acquisition,pre-processing, feature extraction, feature selection, and deep learning-based defect detection. The proposed Defect FuseClassifier, integrating CNN, Bi-LSTM, and RNN, demonstrates superior performance, making it a promising solution fordefect detection in ceramic tile surfaces.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0