메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이창준 (한경국립대학교) 이정근 (한경국립대학교)
저널정보
한국센서학회 센서학회지 센서학회지 제32권 제3호
발행연도
2023.5
수록면
174 - 179 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Bulk trailers, used for the transportation of powdered materials, such as cement and fly ash, are crucial in the construction industry. The speedy exhaustion of powdered materials stored in the tank of bulk trailers is relevant to improving transportation efficiency and reducing transportation costs. The exhaust time can be reduced by developing an automatic control system to replace the manual exhaust operation. The instantaneous or accumulated exhausts of powdered materials must be measured for automatic control of the bulk trailer exhaust system. Accordingly, we previously proposed a recurrent neural network (RNN) model that estimated the instantaneous exhaust based on low-cost pressure sensor signals without an expensive flowmeter for powders. Although our previous study utilized only an RNN model, models such as multilayer perceptron (MLP) and convolutional neural network (CNN) are also widely utilized for time-series estimation. This study compares the performance of three neural network models (MLP, CNN, and RNN) in estimating instantaneous and accumulated exhausts. In terms of the instantaneous exhaust estimation, the difference in the performance of neural network models was insignificant (that is, 8.64, 8.62, and 8.56% for the MLP, CNN, and RNN, respectively, in terms of the normalized root mean squared error). However, in the case of the accumulated exhaust, the performance was excellent in the order of CNN (1.67%), MLP (2.03%), and RNN(2.20%).

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0