메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Duan Liqun (Huazhong University of Science and Technology China) Huang Jinlong (People’s Hospital of Dongxihu District China) Zhang Yong (Huazhong University of Science and Technology China) Pi Guoliang (Huazhong University of Science and Technology China) Ying Xiaofang (Huazhong University of Science and Technology China) Zeng Fanyu (Huazhong University of Science and Technology China) Hu Desheng (Huazhong University of Science and Technology China) Ma Jia (Huazhong University of Science and Technology China)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.45 No.6
발행연도
2023.6
수록면
749 - 761 (13page)
DOI
10.1007/s13258-023-01380-y

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background Nasopharyngeal carcinoma (NPC) is the most common head and neck tumor in China. Forkhead box (FOX) proteins have 19 subfamilies, which can maintain cell metabolism, regulate cell cycle and cell growth, etc. FOXK1 is a member of the FOX family, and studies have found that FOXK1 is closely related to tumors. Objective This experiment aims to study the effects of FOXK1 interference on proliferation, apoptosis, invasion, epithelial-mesenchymal transition (EMT), and radiosensitivity, by regulating the Janus kinas/signal translator and activator of the transfer 3 (JAK/STAT3) pathway. Methods The expression of FOXK1 was detected via immunohistochemistry using clinical nasopharyngeal carcinoma tissues and adjacent tissues. The relationship between FOXK1 expression and tumor stage was subsequently evaluated. The colony formation rate was calculated through the colony formation experiment. Cell apoptosis and cell cycle distribution were detected using flow cytometry, while cell invasion was detected using the Transwell method. The number of cells in the nucleus of each group after 30 min, 4 h, and 24 h of radiotherapy with the 2 Gy dose was counted using immunofluorescence under γ-H2AX focal points of a laser confocal microscope. Results FOXK1 is clearly expressed in the patients’ cancer tissues. The expression of FOXK1 was significantly correlated with the patient’s sex. FOXK1 interference or Peficitinib can upregulate the apoptosis rate of 5-8 F and CNE-2 cells; increase the G2 phase of cells; and inhibit the invasion, migration, and EMT of cells. At the same time, FOXK1 interference can downregulate the protein expression of p-JAK1, p-JAK2, and p-STAT3 in cells. Interference from FOXK1 or Peficitinib alone can reduce the rate of cell colony formation under different radiation doses, and enhance the green fluorescence intensity of γ-H2AX in the nucleus after 4 and 24 h of the 2 Gy dose of radiotherapy. These results are optimal when FOXK1 interference and Peficitinib are used together. Conclusion FOXK1 interference in NPC cells can regulate EMT through the JAK/STAT3 signal pathway, enhance the radiosensitivity of cells, and thus inhibit tumor cell progression.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0