메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Intae Whoang (SK hynix) Chinkwan Cho (SK hynix) Jin Hee Hong (SK hynix) Dong Hee Son (SK hynix) Byung Yoon Lim (SK hynix) Jin Pyung Kim (SK hynix) Kijun Bang (SK hynix)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.23 No.5
발행연도
2023.10
수록면
251 - 257 (7page)
DOI
10.5573/JSTS.2023.23.5.251

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
At SK hynix Wafer Level Package (WLPKG) line, there are plenty of measuring and inspection steps to ensure the quality of High Bandwidth Memory (HBM). Although most of the measuring and inspection steps are handled automatically, some of the steps still need confirmation from line operators with their naked eye and skills. Since the operators" skills are different, sometimes it causes human errors, and these risks become chronic problems for the company. To solve this problem, Package & Test (P&T) group at SK hynix has been steadily promoting the inspection automation system using deep learning. However, deep learning has the disadvantage of not providing interpretation information, such as which area is actually defective in the target image and its shape for the ‘Excellent’ result of outputs. In this paper, we will introduce cases in which defect patterns are automatically extracted from inspection images taken during the SiN / SiO2 film deposition process by using two deep-learning segmentation models. The performance of the technology to be introduced was demonstrated by comparing the Mean IoU value between the extracted defect image and label mask. Through the proposed technology, we intend to contribute to unmanned inspection verification tasks in the future and accelerate the realization of Industry 4.0.

목차

Abstract
I. INTRODUCTION
II. RELATED RESEARCH: DEEP LEARNING SEGMENTATION MODELS
III. EXPERIMENT
IV. EXPERIMENT RESULT
V. CONCLUSION
REFERENCE

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088307504