메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
동향자료
저자정보
저널정보
한국전자통신연구원 [ETRI] 전자통신동향분석 전자통신동향분석 제38권 제5호
발행연도
2023.10
수록면
34 - 50 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Internet of things (IoT) is commonly employed to detect different kinds of diseases in the health sector. Systemic lupus erythematosus (SLE) is an autoimmune illness that occurs when the body’s immune system attacks its own connective tissues and organs. Because of the complicated interconnections between illness trigger exposure levels across time, humans have trouble predicting SLE symptom severity levels. An effective automated machine learning model that intakes IoT data was created to forecast SLE symptoms to solve this issue. IoT has several advantages in the healthcare industry, including interoperability, information exchange, machineto-machine networking, and data transmission. An SLE symptom-predicting machine learning model was designed by integrating the hybrid marine predator algorithm and atom search optimization with an artificial neural network. The network is trained by the Gene Expression Omnibus dataset as input, and the patients’ data are used as input to predict symptoms. The experimental results demonstrate that the proposed model’s accuracy is higher than state-of-the-art prediction models at approximately 99.70%.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0