메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gayoung Kim (Kangnam University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.24 No.3
발행연도
2024.9
수록면
287 - 294 (8page)
DOI
10.5391/IJFIS.2024.24.3.287

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Disease prediction using existing deep learning methods can predict diseases with relatively limited clinical data by detecting the symptoms of specific parts and body abnormalities according to the disease. Predicting a patient’s severity requires considering multiple types of clinical data. However, existing models struggle with overfitting and reduced accuracy in making these predictions. This study proposes a system that can predict the signs of critical illness using vital data from multiple patients, such as respiratory rate and oxygen saturation, through deep learning. This enables an early response by medical staff, improving treatment efficiency, and reducing the mortality rate. To address these issues, DNN-based intensive care prediction (DBICP), was used to detect whether the patient is improving and the risk; it showed a prediction accuracy of 95%, which is approximately 10% higher than the prediction accuracy using existing methods. If the predicted patient status is presented to the medical staff through the proposed system, we expect that work efficiency and treatment results will be improved through a more accurate and faster diagnosis.

목차

Abstract
1. Introduction
2. Related Works
3. Establishment of a Model to Predict Symptoms of Critical Patients
4. Implementation Analysis
5. Conclusion and Future Work
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090649197