메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
조택형 (연세대학교) 최종은 (연세대학교)
저널정보
한국자동차공학회 한국자동차공학회 춘계학술대회 2023 한국자동차공학회 춘계학술대회
발행연도
2023.5
수록면
1,018 - 1,023 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the growth of deep learning technology, there are many elaborate object detection models being developed for safe autonomous driving. However, a common problem is that the training data is often biased toward normal daytime which leads to high uncertainty in the predictions on adverse weather conditions that were not included in the training data. Therefore, in this paper, we developed a robust model for bad weather conditions by utilizing mixture density network to estimate the uncertainty of the deep learning model’s predictions. Our method showed better performance than original models in fog, rain, and nighttime environments.

목차

Abstract
1. 서론
2. 선행 연구 조사
3. 객체탐지 모델 불확설성 추정
4. 실험 및 결과
5. 결론
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0