메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
고광만 (상지대학교)
저널정보
한국정보전자통신기술학회 한국정보전자통신기술학회 논문지 한국정보전자통신기술학회 논문지 제16권 제3호
발행연도
2023.6
수록면
161 - 166 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 바이너리 코드에 대한 신종•변종 해킹이 증가되고 있으며 소스 프로그램에서 악성코드를 탐지하고 공격에 대한 방어 기술의 한계점이 자주 노출되는 상황이다. 바이너리 코드에 대해 머신러닝, 딥러닝 기술을 활용하여 고도화된 소프트웨어 보안 취약점 탐지 기술과 공격에 대한 방어와 대처 능력이 필요하다. 본 논문에서는 바이너리 코드의 실행 경로를 추적(execution trace)하여 동적 오염 정보를 입력한 후 오염 정보를 따른 특징을 기반으로 멀웨어를 그룹핑하는 멀웨어 클러스터링 방법을 제안한다. 멀웨어 취약점 탐지는 3-계층으로 구성한 Few-shot 학습 모델에 적용하여 각 계층의 CPU, GPU에 대해 F1-score를 산출하였다. 학습 과정에서 97~98%의 성능과 테스트 과정에서 80~81% 정도의 탐지 성능을 얻었다.

목차

요약
Abstract
1. 서론
2. 연구배경 및 관련연구
3. 오염 분석 기반 멀웨어 클러스터링
4. 결론 및 향후 연구
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-569-001741197