메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정인 (Korea Institute of Civil Engineering and Building Technology) 안진희 (Korea Institute of Civil Engineering and Building Technology) 고경택 (Korea Institute of Civil Engineering and Building Technology) 김영석 (Korea Institute of Civil Engineering and Building Technology)
저널정보
한국지반신소재학회 한국지반신소재학회 논문집 한국지반신소재학회 논문집 제22권 제2호
발행연도
2023.6
수록면
47 - 54 (8page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 자료 조사를 위한 최적의 키워드 추출 및 검색 방법을 제안하였으며, 북한 건설 관련 동향 파악을 예시로 제안 방법을 검증하였다. 대표적인 국내 언론 플랫폼인 빅카인즈(BigKinds)를 활용하여 표본 기사를 선정하고 키워드를 추출하였다. 추출된 키워드는 워드 임베딩(Word Embedding)을 활용하여 벡터화하였으며, 이를 토대로 코사인 유사도(Cosine Similarity)를 통해 추출된 키워드 간의 유사도를 검사하였다. 또한 상위 빈도수 10개에 대한 키워드를 기준으로 유사도 0.5이상인 키워드들을 군집화하였다. 각 군집들은 빅카인즈 검색 양식에 맞추어 군집 내부 키워드 간에는 ‘OR’, 군집 간에는 ‘AND’로 형성하였다. 심층 분석 결과, 본래 목적에 맞는 유의미한 기사들이 추출되었음을 확인할 수 있었다. 기존의 분류체계 및 검색 양식을 변형시키지 않은 상태에서 사용자의 세부 목적을 충족시키는 자료 조사·분류가 가능하게 되었다는 점에서 의의를 갖는다.

목차

ABSTRACT
요지
1. 서론
2. 선행 연구 및 이론적 배경
3. 키워드 추출 및 검색 기법 생성
4. 결론 및 고찰
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-532-001777803