메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
An, Qi (Kookmin University) Choi, Kyung Ran (Kookmin University)
저널정보
한국전시산업융합연구원 한국과학예술융합학회 한국과학예술융합학회 Vol.41 No.3
발행연도
2023.6
수록면
149 - 161 (13page)
DOI
10.17548/ksaf.2023.06.30.149

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The living environment is a composite of multiple elements. As society and lifestyles change, the design and use of living spaces and related features also change over a certain period. Therefore, for residential architecture, living space, and furniture designers, designing the user-centered design according to the actual user’s living conditions is essential.
First, This research uses the video data of Beijing residents living conducted by the Oriental Culture & Design Center(OCDC) to encode and analyze based on the user-centered framework through Noldus the Observer XT program.
Secondly, 53,550 behavioral codes were recorded for 14 days in six households. The behaviors were organized axially based on 24 hours, and the temporal behavioral patterns were extracted based on workday and weekend.
Thirdly, Through quantitative data analysis and qualitative observation insights, this study summarizes the general life patterns of Chinese urban dwellings and provides a database for designers.
Fourthly, based on Insights, we propose five directions for the future design of living spaces.
The established temporal database of living behaviors can provide design practitioners and researchers with data support for the future development of residential space. The computer-aided user observation framework also improves the weaknesses of previous user observation analyses, which are considered subjective, and provides a new method of considering user research.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Related Work
Ⅲ. Method
Ⅳ. Result
Ⅴ. Discussion
Ⅵ. Conclusions
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-600-001786941