메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정명현 (전남대학교) 유선용 (전남대학교)
저널정보
한국생명과학회 생명과학회지 생명과학회지 제33권 제6호
발행연도
2023.6
수록면
490 - 497 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
임산부의 기존 질병 또는 임신 중 발생한 질병을 치료하기 위한 약물의 사용은 태아에게 잠재적인 위협이 될 수 있으므로 약물의 태아 독성 여부를 예측하는 것이 필수적이다. 하지만 약물의 태아 독성을 밝혀내는 것은 많은 시간과 비용을 필요로 하며 인간 태아에게서 독성 작용을 나타내는 근거가 불분명하다. 이에 따라 최근 태아 독성 평가를 위한 시험 설계의 현대화, 예측성 개선, 동물 사용 및 투자 비용 감소를 위한 in silico 태아 독성 평가 모델의 필요성이 대두되고 있다. 본 연구는 태아 독성 정보를 수집하고 다양한 기계학습 알고리즘을 적용하여 태아 독성 예측이 가능한 모델을 구축하였으며, 태아 독성 예측 모델의 입력 값으로 활용하기 위해 각 약물에 대한 구조적 및 생리학적 특성 벡터를 생성하였다. 이후 예측 정확도 개선을 위해 초매개변수를 조정하여 모델을 최적화 하였다. 개발한 태아 독성 예측 모델의 유효성을 검증하기 위해 학습 셋과 독립된 테스트 셋을 활용하여 정량적 성능 평가를 수행하였으며, 모든 모델의 약물 및 약물 후보 물질의 태아 독성 여부를 예측할 수 있는 것을 확인하였다(AUROC>0.85, AUPR>0.9). 나아가, 예측 모델의 특성 중요도를 분석하여 태아 독성과 관련성이 높은 약물의 특성을 제시하였다. 제안한 모델은 적은 비용과 시간으로 예측 점수를 제공함으로써 인간에 대한 태아 독성 연구를 설계하는 과정에 도움이 될 것을 기대한다.

목차

서론
재료 및 방법
결과 및 고찰
고찰
References
초록

참고문헌 (44)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-470-001782692