메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김도형 (한양대학교) 조병완 (한양대학교)
저널정보
한국재난정보학회 한국재난정보학회 논문집 한국재난정보학회 논문집 제17권 제2호
발행연도
2021.1
수록면
245 - 253 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
연구목적: 본 연구는 화재발생 건축물 정보, 신고자 취득 정보 등 초기 정보를 활용하여 화재현장의 위험도를 예측하여, 재난 발생 초기에 효과적인 소방자원 동원 및 적절한 대응을 위한 피해최소화 전략 수립을 지원하는 위험도 예측 모델을 개발하고자 한다. 연구방법: 화재 통계 데이터 상에서 화재의 피해규모와 관련된 변수 규명을 위해 머신러닝 알고리즘을 이용한 변수간 상관성 분석을 실시하여 예측 가능성을 검토하고, 데이터 표준화 및 이산화 등의 전처리를 통해 학습 데이터 셋을 구축하였다. 이를 활용하여 예측 정확도가 높은 것으로 평가 받고 있는 복수의 머신러닝 알고리즘을 테스트하여 가장 정확도가 높은 알고리즘을 적용한 위험도 예측 모델을 개발하였다. 연구결과: 머신러닝 알고리즘 성능 테스트 결과 랜덤포레스트 알고리즘의 정확도가 가장 높게 나왔으며, 위험도 등급에 대해서는 중간치에 대한 정확성이 상대적으로 높은 것으로 확인되었다. 결론: 화재 통계 상 피해규모 데이터의 편향성에 의해 예측모델 정확도가 제한적으로 나타났으며, 예측 모델 성능 개선을 위해 데이터 정합성 및 결손치 보완 등을 통한 데이터 정제가 필요하다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0