메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국식물분류학회 식물분류학회지 식물분류학회지 제47권 제2호
발행연도
2017.6
수록면
124 - 131 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Species identification is a fundamental and routine process in plant systematics, and linguistic-based dichotomous keys are widely used in the identification process. Recently, novel tools for species identification have been developed to improve the accuracy, ease to use, and accessibility related to these tasks for a broad range of users given the advances in information and communications technology. A visual identification key is such an approach, in which couplets consist of images of plants or a part of a plant instead of botanical terminology. We developed a visual identification key for 101 taxa of Orchidaceae in Korea and evaluated its performance. It uses short statements for image couplets to avoid misinterpretations by users. The key at the initial steps (couplets) uses relatively easy characters that can be determined with the naked eye. The final steps of the visual key provide images of species and information about distributions and flowering times to determine the species that best fit the available information. The number of steps required to identify a species varies, ranging from three to ten with an average of 4.5. A performance test with senior college students showed that species were accurately identified using the visual key at a rate significantly higher than when using a linguistic-based dichotomous key and a color manual. The findings presented here suggest that the proposed visual identification key is a useful tool for the teaching of biodiversity at schools, for the monitoring of ecosystems by citizens, and in other areas that require rapid, easy, and accurate identifications of species.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-480-001815589