메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shaohua Tang (Chonnam National University) Minji Kim (Dongseo University) Sasi Sooksatra (Chonnam National University) Seungmin Kim (Chonnam National University) Jihyeong Ko (Chonnam National University) Jungeun Ha (Baekseok University) Dong-Hun Han (Seoul National University) Kyu-Hwan Lee (Seoul National University Bundang Hospital) Youngjin Jung (Chonnam National University) Tai-hoon Kim (Chonnam National University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.29 No.4
발행연도
2024.12
수록면
509 - 517 (9page)
DOI
10.4283/JMAG.2024.29.4.509

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The ability to accurately and efficiently identify individuals using panoramic dental radiographs (PDRs) is crucial in human identification, particularly in scenarios such as large-scale disasters and criminal investigations. However, this task poses significant challenges due to the complex anatomical structures of teeth, variations in image quality, and the need for scalable data processing methods. To address these issues, we conducted a study using a dataset of 16,383 PDR images from 2,653 individuals, applying a standardized preprocessing pipeline that included medial filter, contrast enhancement to improve input data consistency. We evaluated the performance of multiple deep learning architectures, including ResNet50, VGG16, and InceptionResNetV2. Our findings revealed that InceptionResNetV2, combined with the triplet loss function, outperformed other models. With input images resized to 299×299 for feature extraction, this model achieved remarkable results, including 99.81 % training accuracy, 99.71 % validation accuracy, and 99.69 % test accuracy. The best validation loss was 0.0121, and the test loss was 0.0134. Additionally, we developed an automated recognition software system based on this model, capable of processing each image in just 33 milliseconds on average. This system offers a fast and reliable tool for human identification, with promising applications in forensic science, disaster victim identification, and personalized medical record management.

목차

1. Introduction
2. Materials and Methods
3. Results
4. Conclusion
5. Discussion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092101079