메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Keunhyung Kim (Jeju National University)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제23권 제2호
발행연도
2023.4
수록면
53 - 58 (6page)
DOI
10.37272/JIECR.2023.04.23.2.53

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we do not only propose appropriate application methods of the semantic network analysis technique, topic modeling technique and text clustering technique, which are techniques that can analyze text document sets but also the convergence application methods between each techniques. Appropriate application methods for the text analysis techniques were presented by dividing exploratory analysis process and modeling process for analyzing the text document set. Semantic network analysis would be not only suitable for exploratory analysis of the entire text document set, but also applicable to performance improvement of topic modeling and text clustering. The meaning of the topic could be interpreted more clearly by applying semantic network analysis secondarily to the document set of each topic derived by topic modeling. It can be used for text cluster interpretation by applying semantic network analysis to the document set of each cluster, which is the result of text cluster analysis. When deriving an appropriate number of topics, a more accurate number of topics could be derived by adding a silhouette analysis along with the degree of perplexity and coherence. New social science research can be expected to be revitalized by enabling more accurate analysis of online text documents using the method proposed in this paper.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Background
Ⅲ. Convergence Application Methodology of Text Analysis Techniques
Ⅳ. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-323-001466097