메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seung-Chun Lee (Hanshin University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제26권 제3호
발행연도
2019.5
수록면
315 - 323 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Panel data sets have recently been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Often a dichotomous dependent variable occur in survival analysis, biomedical and epidemiological studies that is analyzed by a generalized linear mixed effects model (GLMM). The most common estimation method for the binary panel data may be the maximum likelihood (ML). Many statistical packages provide ML estimates; however, the estimates are computed from numerically approximated likelihood function. For instance, R packages, pglm (Croissant, 2017) approximate the likelihood function by the Gauss–Hermite quadratures, while Rchoice (Sarrias, Journal of Statistical Software, 74, 1–31, 2016) use a Monte Carlo integration method for the approximation. As a result, it can be observed that different packages give different results because of different numerical computation methods. In this note, we discuss the pros and cons of numerical methods compared with the exact computation method.

목차

Abstract
1. Introduction
2. Maximum likelihood method
3. Simulation study
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001441542