메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yin Cao (Seoul National University) Kwangok Seo (Seoul National University) Soohyun Ahn (Ajou University) Johan Lim (Seoul National University)
저널정보
한국통계학회 CSAM(Communications for Statistical Applications and Methods) CSAM(Communications for Statistical Applications and Methods) 제29권 제6호
발행연도
2022.11
수록면
655 - 664 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
On the motivation by an integrative study of multi-omics data, we are interested in estimating the structure of the sparse cross correlation matrix of two high-dimensional random vectors. We rewrite the problem as a multiple testing problem and propose a new method to estimate the sparse structure of the cross correlation matrix. To do so, we test the correlation coefficients simultaneously and threshold the correlation coefficients by controlling FRD at a predetermined level α. Further, we apply the proposed method and an alternative adaptive thresholding procedure by Cai and Liu (2016) to the integrative analysis of the protein expression data (X) and the mRNA expression data (Y) in TCGA breast cancer cohort. By varying the FDR level α, we show that the new procedure is consistently more efficient in estimating the sparse structure of cross correlation matrix than the alternative one.

목차

Abstract
1. Introduction
2. Methods
3. Data example
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001433164