메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김재범 (건국대학교)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.37 No.6
발행연도
2015.1
수록면
525 - 535 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A disease can be characterized by various attributes such as genomic, epigenetic, and transcriptomic features beyond physiological symptoms. The accumulation of vast datasets allows us to investigate the relative effectiveness of each omics data and their combinations for in silico analysis of diseases. Here, we employed a classification method with the well-established measure of information gain for the computational analysis of the effect of the aggregation of omics data, especially for the task of in silico classification of tumor-normal samples for bladder urothelial carcinoma and kidney renal papillary cell carcinoma. We observed that the combination of multi-omics data such as copy number variation, DNA methylation, RNA-Seq, and somatic mutations have beneficial effects. The quantitative analysis using information gain and various measures for classification-performance showed that the combination of multiple omics data improved the performance in general. The qualitative analysis referring previous researches also confirmed the relevance of genes with higher information gain to target diseases. Our results report that the combination of multiple omics data is beneficial and the information gain which focuses on the distribution of attributes across target domains could be useful as an indicator of the effect of each omics data on tumor-normal sample classification.

목차

등록된 정보가 없습니다.

참고문헌 (58)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0