메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mingyang Wang (Shenyang Agricultural University) Yan Zhao (Shenyang Agricultural University) Lingfang Cao (Shenyang Agricultural University) Silong Luo (Shenyang Agricultural University) Binyan Ni (Qingdao Vetlab Biotechnology) Yi Zhang (Shenyang Agricultural University) Zeliang Chen (Shenyang Agricultural University)
저널정보
대한수의학회 Journal of Veterinary Science Journal of Veterinary Science 제22권 제1호
발행연도
2021.1
수록면
36 - 48 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans.
Objectives: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifungal mechanism of KTZ needs to be studied in detail.
Methods: In this study, one strain of fungi was isolated from a canine suffering with clinical dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was performed to identify differentially expressed genes in M. canis exposed to KTZ compared with those unexposed thereto.
Results: At half-inhibitory concentration (½MIC), compared with the control group, 453 genes were significantly up-regulated and 326 genes were significantly down-regulated (p < 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely related to the antifungal mechanism of KTZ.
Conclusions: The results indicated that KTZ may change cell membrane permeability, destroy the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi.

목차

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-528-001326057