메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제30권 제6호
발행연도
2017.12
수록면
851 - 865 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 워너크라이라는 이름의 랜섬웨어가 전 세계적으로 큰 화두에 오르면서, 악성 소프트웨어로 인한 피해를 줄이기 위한 방법들이 재조명 되고 있다. 새로운 악성 소프트웨어가 발생했을 때 피해를 최소화하기 위해서는 해당 소프트웨어가 어떤 공격 유형을 가진 악성 소프트웨어인지 빠르게 분류할 필요가 있다. 본 연구 목적은 다양한 통계적 기법을 이용하여 악성 소프트웨어를 효과적으로 분류할 수 있는 모형을 구축하는 데 있다. 모형 적합 시 다항 로지스틱, 랜덤 포레스트, 그래디언트 부스팅, 서포트 벡터 기계 등의 기법들을 이용하였으며, 본 연구를 통해 악성 소프트웨어를 분류하는 데에 있어 중요한 역할을 하는 변수들이 존재한다는 사실을 발견하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001585374