메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제30권 제1호
발행연도
2017.2
수록면
119 - 133 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이미 corrected Akaike's information criterion(AICc)가 AIC에 비해 우수한 이론적 성질을 가진 것으로 알려져 있으나, 현재 실제 자료분석에서 최적의 예측 모형을 선택하기 위해 가장 널리 사용되는 정보기준은 여전히 Akaike`s information criterion(AIC)이다. 이것은 AICc를 사용함으로써 실제 우리가 어떠한 종류의 이점을 얻을 수 있는 가에 대해 논의하고 있는 연구가 부족해서이다. 우리는 이 논문에서 수치 연구를 통해 AIC와 AICc의 성능을 비교하고 AICc 의 사용이 가져오는 장점에 대해 확인을 할 것이다. 또한, 포아송 또는 이항 분포 자료 분석에서 과대산포(overdispersion) 현상이 나타난 경우 사용하는 quasi Akaike's information criterion(QAIC)와 corrected quasi Akaike`s information criterion(QAICc) 성능에 대해서도 시뮬레이션을 통해 비교해보고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001589170