메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박재완 (전남대학교) 이칠우 (전남대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제5권 제2호
발행연도
2016.6
수록면
15 - 23 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 신체 부분 포즈를 이용한 깊이 영상 포즈렛과 제스처를 인식하는 방법을 제안한다. 제스처는 순차적인 포즈로 구성되어 있기 때문에, 제스처를 인식하기 위해서는 시계열 포즈를 획득하는 것에 중점을 두고 있어야 한다. 하지만 인간의 포즈는 자유도가 높고 왜곡이 많기 때문에 포즈를 정확히 인식하는 것은 쉽지 않은 일이다. 그래서 본 논문에서는 신체의 전신 포즈를 사용하지 않고 포즈 특징을 정확히 얻기 위해 부분 포즈를 사용하였다. 본 논문에서는 16개의 제스처를 정의하였으며, 학습 영상으로 사용하는 깊이 영상 포즈렛은 정의된 제스처를 바탕으로 생성하였다. 본 논문에서 제안하는 깊이 영상 포즈렛은 신체 부분의 깊이 영상과 해당 깊이 영상의 주요 3차원 좌표로 구성하였다. 학습과정에서는 제스처를 학습하기 위하여 깊이 카메라를 이용하여 정의된 제스처를 입력받은 후, 3차원 관절 좌표를 획득하여 깊이 영상 포즈렛이 생성되었다. 그리고 깊이 영상 포즈렛을 이용하여 부분 제스처 HMM을 구성하였다. 실험과정에서는 실험을 위해 깊이 카메라를 이용하여 실험 영상을 입력받은 후, 전경을 추출하고 학습된 제스처에 해당하는 깊이 영상 포즈렛을 비교하여 입력 영상의 신체 부분을 추출한다. 그리고 HMM을 적용하여 얻은 결과를 이용하여 제스처 인식에 필요한 부분 제스처를 확인한다. 부분 제스처를 이용한 HMM을 이용하여 효과적으로 제스처를 인식할 수 있으며, 관절 벡터를 이용한 인식률은 약 89%를 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0