메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이연지 (강릉원주대학교) 엄소희 (강릉원주대학교)
저널정보
복식문화학회 복식문화연구 복식문화연구 제23권 제5호
발행연도
2015.10
수록면
737 - 754 (18page)
DOI
10.7741/rjcc.2015.23.5.737

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The structural aesthetics of architecture are becoming an inspirational source for many fashion designers and have been reborn in structural fashion. This study planned to analyze the method of expression of structural aesthetics expressed in modern structural fashion design and the construction method to maximize such an effect on the basis of the construction characteristic of Santiago Calatrava as the representative architect of the structural aesthetic. According to the study, the structural aesthetics expressed in modern structural fashion design are as follows: 1) The symbolical formative aesthetic expressed by symbolical inference and analyzation; 2) the dynamic beauty of physic expressed by visual emphasis and dynamics; and 3) the asymmetric beauty of symmetry expressed by metastasis toward the boundary between balance and imbalance. In addition, to maximize structural aesthetics, we used repetition and a progressive technique based on rhythm, asymmetry, and incision-based variances, such as balance, polygon flux, and inference, and analyzation-based distortion as the structuring principle. The following expression methods for maximizing structural aesthetics were found: 1) symbolical and structural exaggeration of appearance; 2) detail technique expansion and material property diversification; and 3) the three-dimensional transformation of structure and shell expression. Structural fashion design was found to have maximized structural aesthetics by using such expression methods to secure artistic esthetics, destroy existing shapes and patterns, and create unique shapes.

목차

등록된 정보가 없습니다.

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0