메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hyeji Jang (POSTECH) Sung H. Han (POSTECH) Joohwan Park (POSTECH) Mingyu Lee (POSTECH) Dong Yeong Jeong (POSTECH)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 대한인간공학회 2015 추계학술대회
발행연도
2015.10
수록면
50 - 54 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aims to review the recent research trend and the current state of the emotion recognition technologies. Nowadays, the road rage became one of the most important social issues. As the cause of road rage is the anger of a driver, it is necessary to detect the driver’s anger and provide adequate feedbacks to prevent severe damages that could be caused by the road rage. For the sake of the reason, many researchers attempted to develop emotion recognition technologies to detect anger of the drivers based on several signals such as physiological signals and facial expressions. Literature survey was conducted to collect and analyze the academic literatures that containing information about the emotion recognition technologies. Collected emotion recognition technologies were analyzed from several perspectives such as the type of the sensors, signals, recognized emotions, and emotion classification algorithms. Most of the researchers preferred to classify emotions into several discrete groups. However, several studies tried to propose technologies to estimate driver’s emotional state on the continuous mood space. The most frequently used physiological signals to recognize the drivers’ emotion were heart rate and Galvanic skin responses. Visible light camera and infrared camera were used for facial expression recognition. The result of the study could be useful for the researchers who want to understanding the current state of the art of the emotion recognition technologies.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-530-002088597