메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hai Ninh NGUYEN (Foreign Trade University)
저널정보
한국유통과학회 유통과학연구 유통과학연구 제19권 제12호
발행연도
2021.12
수록면
23 - 32 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: By integrating multiple separate online, offline distribution channels, omnichannel distribution has modernized and revolutionized the retailing sector. Omnichannel distribution supports firms by delivering seamless shopping experiences for customers throughout all touchpoints of the shopping journey. This paper aims at exploring the impact of channel integration quality on customer experience and patronage intentions in the omnichannel distribution context. Research design, data and methodology: An online survey was taken with 351 omnichannel experienced shoppers by utilizing the structured questionnaire. The partial least square? structural equation modeling (PLS-SEM) and Smart PLS software were employed to analyze and test proposed hypotheses. Results: The findings reveal that channel integration quality dimensions including breadth of channel-service choice, transparency of channelservice configuration, content consistency, and process consistency, play crucial roles in the customer shopping experience. The perceived compatibility has been influenced by the integrated interactions in which content consistency and process consistency. The findings also demonstrate the positive and direct impact of perceived compatibility on customer experience, and both factors have substantial effects on customers' patronage intentions. Conclusions: This study sheds light on the literature on channel integration quality, omnichannel retailing experience and customer patronage. In addition, this study provides practical implications for omnichannel retailers in enhancing customer experience and patronage.

목차

등록된 정보가 없습니다.

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0