메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김준혁 (광운대학교) 이상훈 (광운대학교) 한현호 (울산대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제12권 제11호
발행연도
2021.11
수록면
45 - 51 (7page)
DOI
https://doi.org/10.15207/JKCS.2021.12.11.045

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
딥러닝의 발전으로 인하여 의미론적 분할 방법은 다양한 분야에서 연구되고 있다. 의료 영상 분석과 같이 정확성을 요구하는 분야에서 분할 정확도가 떨어지는 문제가 있다. 본 논문은 의미론적 분할 시 특징 손실을 최소화하기 위해 딥러닝 기반 분할 방법인 PSPNet을 개선하였다. 기존 딥러닝 기반의 분할 방법은 특징 추출 및 압축 과정에서 해상도가 낮아져 객체에 대한 특징 손실이 발생한다. 이러한 손실로 윤곽선이나 객체 내부 정보에 손실이 발생하여 객체 분류 시 정확도가 낮아지는 문제가 있다. 이러한 문제를 해결하기 위해 의미론적 분할 모델인 PSPNet을 개선하였다. 기존 PSPNet에 제안하는 multi scale attention을 추가하여 객체의 특징 손실을 방지하였다. 기존 PPM 모듈에 attention 방법을 적용하여 특징 정제 과정을 수행하였다. 불필요한 특징 정보를 억제함으로써 윤곽선 및 질감 정보가 개선되었다. 제안하는 방법은 Cityscapes 데이터 셋으로 학습하였으며, 정량적 평가를 위해 분할 지표인 MIoU를 사용하였다. 실험을 통해 기존 PSPNet 대비 분할 정확도가 약 1.5% 향상되었다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0