메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신석용 (광운대학교 플라즈마바이오디스플레이학과 석사과정) 이상훈 (광운대학교) 한현호 (울산대학교)
저널정보
중소기업융합학회 융합정보논문지 융합정보논문지 제11권 제10호
발행연도
2021.10
수록면
45 - 52 (8page)
DOI
https://doi.org/10.22156/CS4SMB.2021.11.10.045

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 U-Net 기반의 semantic segmentation 방법에서 정확도를 개선하기 위한 Atrous Residual U-Net (AR-UNet)을 제안하였다. U-Net은 의료 영상 분석, 자율주행 자동차, 원격 감지 영상 등의 분야에서 주로 사용된다. 기존 U-Net은 인코더 부분에서 컨볼루션 계층 수가 적어 추출되는 특징이 부족하다. 추출된 특징은 객체의 범주를 분류하는 데 필수적이며, 부족할 경우 분할 정확도를 저하시키는 문제를 초래한다. 따라서 이 문제를 개선하기 위해 인코더에 residual learning과 ASPP를 활용한 AR-UNet을 제안하였다. Residual learning은 특징 추출 능력을 개선하고, 연속적인 컨볼루션으로 발생하는 특징 손실과 기울기 소실 문제 방지에 효과적이다. 또한 ASPP는 특징맵의 해상도를 줄이지 않고 추가적인 특징 추출이 가능하다. 실험은 Cityscapes 데이터셋으로 AR-UNet의 효과를 검증하였다. 실험 결과는 AR-UNet이 기존 U-Net과 비교하여 향상된 분할 결과를 보였다. 이를 통해 AR-UNet은 정확도가 중요한 여러 응용 분야의 발전에 기여할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0