메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
추승연 (이화여자대학교 커뮤니케이션·미디어학부) 강승미 (닥스미디어 편집장) 유승철 (이화여자대학교)
저널정보
경희대학교 경영연구원 의료경영학연구 의료경영학연구 제15권 제3호
발행연도
2021.9
수록면
41 - 59 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
As online un-contact services are getting prevalent due to the COVID-19, the medical community is now actively promoting the introduction of AI chatbot service to solve problems such as the surge in patients and the limited capacity of the medical system. For pregnant women or those who have difficulty visiting maternity hospitals due to COVID-19, a chatbot service is also needed to provide easy and convenient counseling. In this study, a research model was established by introducing perceived values (professionalism, reliability, and empathy) and patient's purpose of use(hospital administration and medical consultation) factors based on the technology acceptance model (TAM), and differences in path coefficients between groups were verified. To sum up the outcomes of this research, first, when looking at each factor’s path analysis without dividing two groups, H1(professionalism→perceived usefulness), H4(professionalism→perceived ease) show non-significant rate. Second, as results, hospital administration group H1(professionalism→perceived usefulness), H3(empathy→perceived usefulness), H4(professionalism→perceived ease) and medical consultation group H1(professionalism→perceived usefulness, H4(professionalism→perceived ease), H6(empathy→perceived ease) both show non-significant rate. Based on these results, this study is expected to present basic results related to the characteristics of patients who use chatbot and its service when introducing AI chatbot medical counseling service, and provide implications for the properties of service to enhance introduction of AI chatbot counseling to obstetrics and gynecology.

목차

등록된 정보가 없습니다.

참고문헌 (82)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0