메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Symphorien Karl Yoki Donzia (대구가톨릭대학교) 김일태 (한국폴리텍대학대전캠퍼스) 김행곤 (대구가톨릭대학교)
저널정보
한국지식정보기술학회 한국지식정보기술학회 논문지 한국지식정보기술학회 논문지 제16권 제5호
발행연도
2021.10
수록면
1,003 - 1,012 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since the human drivers are sometimes tired of taking control of the vehicle at all times, we currently have an autonomous car capable of sensing its surroundings and operating without human intervention. The autonomous vehicle is a hot topic at the moment. Technology that enables access to high levels of autonomy is essential for future automotive development. With the development of the Internet and IoT, cars have become powerful mobile machines that can see, hear and predict for themselves. Vehicles become a formidable moving machine that is connected to the Internet. With the open application Autoware, We will implement an autonomous driving model applying Autoware in this study. And we will try to connect between vehicles using the Internet of Things and Big Data. The objectives of our study are to implement by extending the Autoware software stack to enable powerful GPU-based, on-board compute capabilities from a functional safety perspective. And also offers primary connectivity to provide vehicle functions to all for fully autonomous driving, where big data services are changing the way people drive. One of the goals of this paper is to convert window-based fonts to ROS-based fonts for seamless integration, and the implemented cloud platform for stand-alone cloud databases collects LiDAR sensors and images. Our study proposes a UML diagram including the design of the Model Autonomous Driving Based on Big data. The Autoware application testing is a resolution for testing embedded software Autoware ROS.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0