메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
지상민 (충남대학교) 박지은 (대구대학교)
저널정보
한국디지털정책학회 디지털융복합연구 디지털융복합연구 제19권 제10호
발행연도
2021.10
수록면
253 - 263 (11page)
DOI
https://doi.org/10.14400/JDC.2021.19.10.253

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기계학습은 학습에 이용되는 학습 데이터와 데이터를 예측할 인공신경망을 이용하여 비용함수를 만들고, 비용함수를 최소화시키는 파라미터들을 찾는 과정이다. 파라미터들은 비용함수의 그래디언트 기반 방법들을 이용하여 변화하게 된다. 디지털 신호가 복잡할수록, 학습하고자 하는 문제가 복잡할수록, 인공신경망의 구조는 더욱 복잡해지고 깊어진다. 복잡하고, 깊어지는 인공신경망 구조는 과적합(Over-fitting) 문제를 발생시킨다. 과적합 문제를 해결하기 위하여 파라미터의 가중치 감소 정규화 방법이 사용되고 있다. 우리는 이러한 방법에서 추가로 비용함수의 값을 이용한다. 이러한 방법으로 기계학습의 정확도가 향상되는 결과를 얻었으며 이는 수치 실험을 통하여 우수성이 확인된다. 이러한 결과는 기계학습을 통한 인공지능의 폭넓은 데이터에 대한 정확한 값을 도출한다.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0