메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
윤규리 (부경대학교) 배상훈 (부경대학교)
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제20권 제4호
발행연도
2021.8
수록면
46 - 56 (11page)
DOI
https://doi.org/10.12815/kits.2021.20.4.46

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
돌발상황으로 인한 비반복정체로 발생하는 높은 교통비용과 혼잡을 효과적으로 해소하기위해서 돌발상황 처리시간을 예측하는 것은 중요하다. 본 연구에서는 인공신경망을 활용한 예측모델 개발을 위해 국내 도로상황에 적합한 돌발상황 처리시간 영향요인을 분석하고, 이를학습데이터로 생성하였다. 기존 연구에서 장시간 소요되는 돌발상황 처리시간에 대한 과소 예측 문제가 발생하여 이에 대한 해결방안으로 본 연구에서는 SMOGN기법을 적용한 오버샘플링 학습데이터를 생성하여 이를 모델에 적용하였다. 그 결과 SMOGN기법을 적용한 DNN모델이 MAE 18.3분으로 연구 과정에서 구축된 모델 중 가장 높은 정확도로 돌발상황 처리시간을예측하여, 기존에 개발된 예측모델의 한계점을 보완할 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (5)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0